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In 1992, Numata et al. reported1 a series of cytotoxic
fungal metabolites obtained from a strain of Aspergillus
fumigatus isolated from the marine fish Pseudolabrus
japonicus. Fumiquinazoline G (1, Figure 1) is a prototypical
member, while others such as fumiquinazoline D (2) feature
further intramolecular cyclizations. The related alkaloid
fiscalin B (3), from the fungus Neosartorya fischeri, was
discovered2 at Sterling-Winthrop in the course of screening
for substance P antagonists and also independently isolated3
from the ascomycete Corynascus setosus. These examples
demonstrate that the pyrazino[2,1-b]quinazoline-3,6-dione
ring skeleton is used by nature as a scaffold for constrained
peptidomimetics, and it has also attracted considerable
attention4 among medicinal chemists.
Retrosynthetically, dehydration of a peptide precursor

(Figure 2) represents a concise and biomimetic route to the
quinazoline ring of these natural products.5 However,
previous conditions for the dehydration have been fairly
harsh, and suitable only for unhindered 2,3-disubstituted
quinazolin-4-ones.6 Syntheses of natural products involving
more sterically demanding substrates have utilized indirect
methods such as thioamide formation (asperlicin C7), oxida-
tion of a dihydroquinazolinone (tryptoquivaline8), or aza-
Wittig reaction (ardeemin9). Snider’s recent synthesis10 of
ent-1 (reported shortly after we began our work) also
employed the aza-Wittig disconnection, requiring judicious

manipulation of protecting groups and a total of 12 steps
from Cbz-L-tryptophan.
Assuming a suitable means for peptide dehydration could

be found, we proceeded with a synthesis of 1 along these
lines. Tripeptide 7 (Scheme 1) was prepared in two steps
from D-tryptophan methyl ester11 by standard methods. At
this stage, we became aware of Wipf’s protocol12 (tri-
phenylphosphine, iodine, triethylamine) for the dehydration
of â-keto amides to oxazoles. Among the amides in 7, the
anilide NH is the most acidic, suggesting that it can enolize
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Figure 1.

Figure 2.

Scheme 1a

a Reagents and conditions: (a) 1-ethyl-3-[3-(dimethylamino)propyl]-
carbodiimide‚HCl (2.2 equiv), anthranilic acid (2.0 equiv), MeCN, rt,
3 h, 90%; (b) Fmoc-D-Ala-Cl (1.2 equiv), CH2Cl2/aqueous Na2CO3, rt, 1
h, 86%; (c) Ph3P (5.0 equiv), I2 (4.9 equiv), EtN(i-Pr)2 (10.1 equiv), rt,
2.5 h, 65%; (d) (i) 20% piperidine in CH2Cl2, rt, 12 min, (ii) SiO2 (75%).
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analogously to the ketone in the oxazole cyclization. To our
delight, treatment of 7 under Wipf’s conditions furnished
the desired product 8 in 65% yield. Following removal of
the Fmoc protecting group, attempted chromatographic
purification of the free amine induced intramolecular cy-
clization, directly yielding (-)-fumiquinazoline G in a total
of four steps and 38% overall yield.
Next, we investigated the sensitivity of the Wipf procedure

to steric hindrance (Table 1). The successful quinazolinone
formation with 4c (R ) i-Pr) is notable, as a previous
attempt6b using phosphorus trichloride failed when R ) i-Bu.
Only the extremely hindered pivalamide 4d did not provide
a satisfactory yield of the quinazolinone. Even in this case,
unreacted starting material was recovered intact, testifying
to the mildness of the reaction conditions.
The synthesis of (-)-fiscalin B (Scheme 2) proceeded

uneventfully up to and including Wipf dehydration of
tripeptide 9. However, amine 11 did not undergo spontane-
ous cyclization, and considerable experimentation was re-
quired for this transformation. Presumably, the increased
bulk of the isopropyl side chain disfavors the desired reactive
conformer. Success was finally realized by refluxing 11 in
acetonitrile, providing (-)-fiscalin B in a total of five steps
and 48% overall yield from D-tryptophan methyl ester.13
In summary, we have demonstrated that the Wipf oxazole

synthesis is also applicable to quinazolinones and provides

a powerful entry to this ring system. We are presently
adapting the methodology to the combinatorial synthesis14
of quinazolinone libraries for biological evaluation.
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Table 1. Examples of Dehydrative Quinazolinone
Synthesisa

substrate R R’
reaction
time (h)

product
yield (%)

recovered
substrate (%)

5a Me OMe 7 4a 99 0
5b Ph OMe 3.5 4b 93 2
5c i-Pr OMe 6 4c 88 12
5d t-Bu OMe 6 4d 17 83

a All substrates were prepared from L-tryptophan methyl ester.
Reactions were carried out in CH2Cl2 solutions with Ph3P (5.0
equiv), I2 (5.0 equiv), EtN(i-Pr)2 (10 equiv), and substrate (final
concentrations were ca. 0.03 M) at rt.

Scheme 2a

a Reagents and conditions: (a) Fmoc-L-Val-Cl (1.4 equiv), CH2Cl2/
aqueous Na2CO3, rt, 2 h, 90%; (b) Ph3P (5.0 equiv), I2 (4.9 equiv), EtN(i-
Pr)2 (10.4 equiv), rt, 8 h, 82%; (c) 20% piperidine in CH2Cl2, rt, 12 min;
(d) MeCN, DMAP (1.3 equiv), reflux 19 h, 72%.
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